TETRA TECH

complex world CLEAR SOLUTIONS™

Debris Flow Modeling & Regulations in Aspen, Colorado

Dai Thomas, PhD, PE
Andrew Earles, PhD, PE – Wright Water Engineers
Jim O'Brien, PhD, PE - FLO-2D
April Long, P.E. – City of Aspen

3rd May 2017

Aspen Mountain

Geology and Mining

It's complicated!

Tourtelotte Park c1890-1893

Historic

- September 1919
 - Cloudburst
 - "yellow clay mud from the mountain"
- August 1964
 - 1.13 inches in 1 hour
 - Pioneer Gulch up to 5' of mud
- June 1984
 - Strawpile Landslide

Strawpile Landslide

- June 1984
- Downtown Evacuated
- 28 to 62 feet deep
- ~15 acres

Legend

Flood Plains; subject to flooding.

Alluvial Fans; subject to sediment deposition during mud floods, mudflows, and debris flows.

Landslides; areas that slid in the past and may be prone to future movement.

Rockfall Areas; areas on or below cliffs that are prone to future rockfall.

Potentially Unstable Slopes; areas potentially prone to future land sliding.

Mudflow Characteristics

Mudflow Characteristics

Saturated Soil Conditions

Sediment

Rainfall (10 to 25-Year Event)

Mudflood

Existing Regulations

WRC – Drainage Master Plan (2001)

Existing Regulations

- Similar to FEMA procedure
 - Duplicate Effective
 - 100-Year Peak Flow Event
 - Sediment Concentration 45%

Existing Conditions

Project Conditions

Existing Regulations

- Evaluate downfan impacts
 - No increase in mudflow depths on neighboring properties

- Evaluate static and dynamic forces on structures
- Identify potential mitigation measures
 - Store mudflow
 - Convey mudflow to streets

Example

Existing

Project

Increase in Depth

Current Study

- Evaluate potential impact to City
- Historical Review
- Geologic Investigation
- Develop new mudflow flow (FLO-2D) model
 - 2-Hour, 2-, 25-, and 100-Year Rainfall Events
 - Depth and Extent of Flooding
 - Hazard Mapping
 - Wildfire Analysis
 - Mitigation
 - Economic Analysis
 - Develop New Guidelines

New FLO-2D Model

- 20-foot Grid Size
- 165,214 Elements
- Based on LiDAR mapping from City

Manning's *n* roughness

Overbank Manning's n-values.			
Land Use	n-value		
Urban/Structures	0.04		
Roads/Streets	0.02		
Mine Tailing	0.40		
Grassland/Ski Runs	0.20		
Light Forest	0.30		
Medium Forest	0.35		
Dense Forest	0.40		

Infiltration

Horton's infiltration parameters.				
Hydrologic Soil Group	Initial Rate (in./hour)		Decay Coefficient (1/second)	
Α	5	1	0.0007	
В	4.5	0.6	0.0018	
С	3	0.5	0.0018	
D	3	0.5	0.0018	

Rainfall

Colorado Unit Hydrograph Procedure (CHUP) NOAA Atlas 14

Recurrence			
Interval	Rainfall		
(years)	(in.)		
2	0.47		
5	0.64		
10	0.77		
25	0.95		
50	1.09		
100	1.23		

Water and Sediment Hydrograph

Model Output

Mapping

Economic Costs

Location	Mud Depth	Days of cleanup	Cost
Streets			>\$300,000
Sewer Lines			>\$380,000
Residential	6'	11	>\$800,000
Hotel	3'	50	>\$4.5M
Commercial	3'	3	\$165,000

Possible Changes to Regulations

- Adjust zoning areas
- 25-year (45% concentration)
- 100-year (20% concentration)
- Depth increase up to 0.5 feet
 - On ground previously inundated
 - Make reasonable effort to not increase.

 No depth increase on land not inundated under existing conditions

Current Study

- Model will be available to:
 - Developers
 - Engineers

Substantial decrease in analysis cost

Easier for City to review

City to keep track of model changes