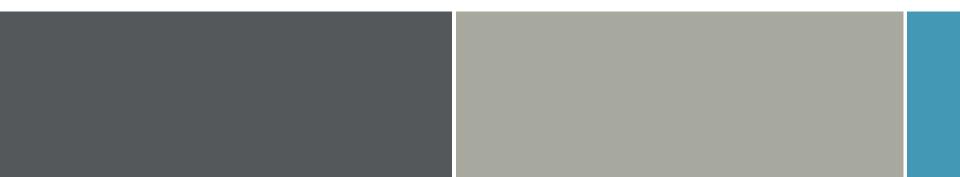
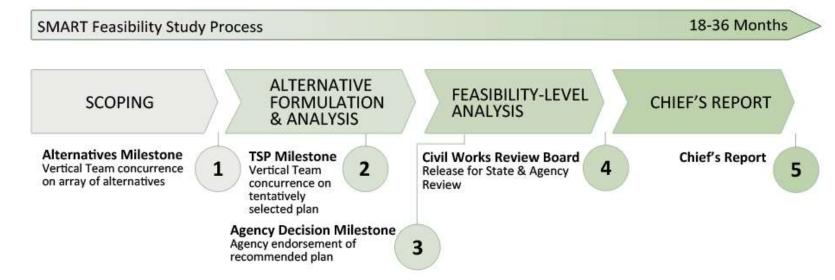


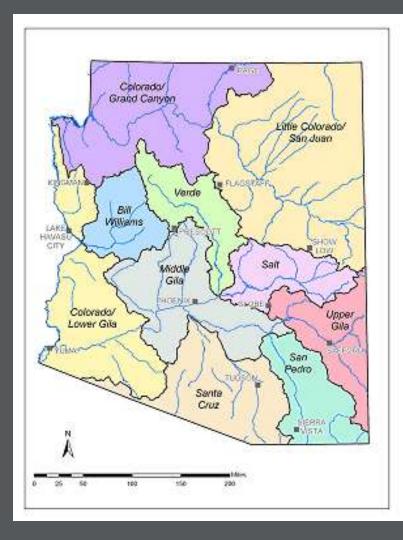
Janelle Moyer, PE, CFM Brinton Swift, PE, CFM

SMART Flood Risk Planning using HEC-RAS 2D

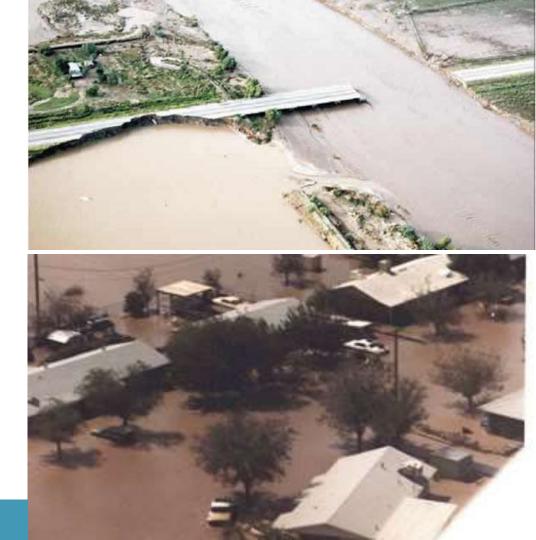

ASFPM 2017 National Conference May 3, 2017

USACE Civil Works Transformation

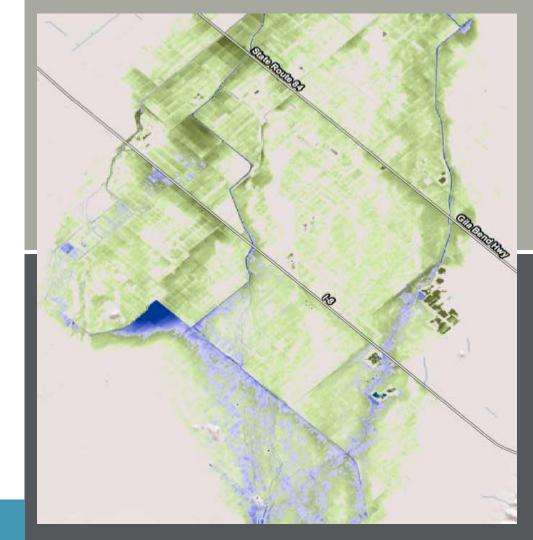

- Change in Feasibility Studies
- Were too detailed, expensive and time-consuming.
- Process modernization needed


SMART Planning

- SMART (Specific, Measurable, Attainable, Risk-Informed, Timely)
- In 2014, USACE initiated 9 new studies under SMART
- 3 x 3 x 3 Rule (3 years, \$3 mil, 3 levels of vertical coordination)
- Shorter timeframes, lower costs
- Report lengths < 100 pages


Project Background

- Lower Santa Cruz River Feasibility Study
- Watershed: 1,400 sq. mi.
 - $_{\circ}~$ Mostly agricultural fields
 - $_{\circ}~$ 5 Towns
 - $_{\circ}~$ 3 Indian Communities
- Project Reach: 80 miles


Project History

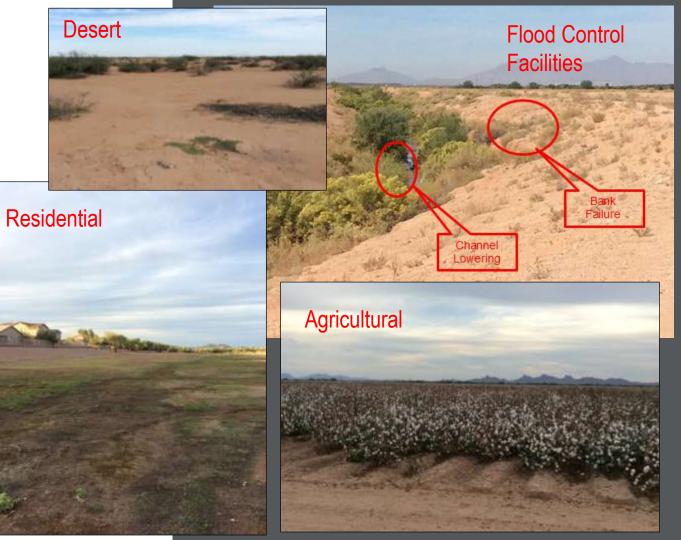
- Long history of catastrophic flooding
- Severe damage to crops, farms, residents, businesses and infrastructure
- Aerial evacuations, bridge closures, serious river erosion, channel migration and sediment deposition
- Dramatic population growth in the watershed in the past decade

Existing Flow Characteristics

- Wide Range of Conditions
- Highly Braided and Multiple Split Flow Locations
- Shallow Flow
- Multiple Long Linear Features
- Multiple Canals
- Subsidence Areas
- Multiple Complex Tributaries

Scope

- Geotechnical Study
- Hydrology
- Hydraulics
- Sedimentation
- Alternatives Development



Approach

- Flood Risk
 - $_{\circ}$ Hydrology
 - HEC-HMS
 - Historical Data Review
 - $_{\circ}$ Hydraulics
 - HEC-RAS 2D
 - Sedimentation
 - HEC-RAS 1D Sediment
 - $_{\circ}$ Economics
 - HEC-FDA

*Collaborate with Corps

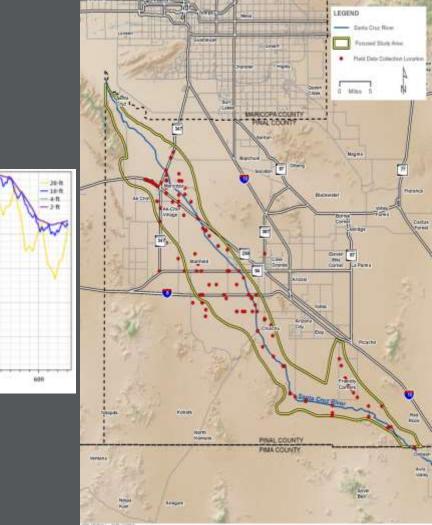
HEC-RAS 2D

- Efficient model
- Good terrain representation
- Split flow paths
- USACE preferred*

*For this project

HEC-RAS Sediment

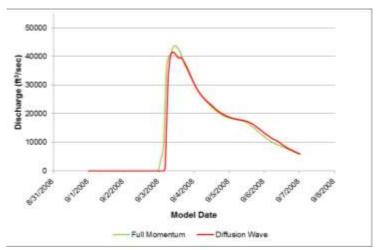
- Well established model
- Fairly easy to use
- Stable platform
- USACE preferred*

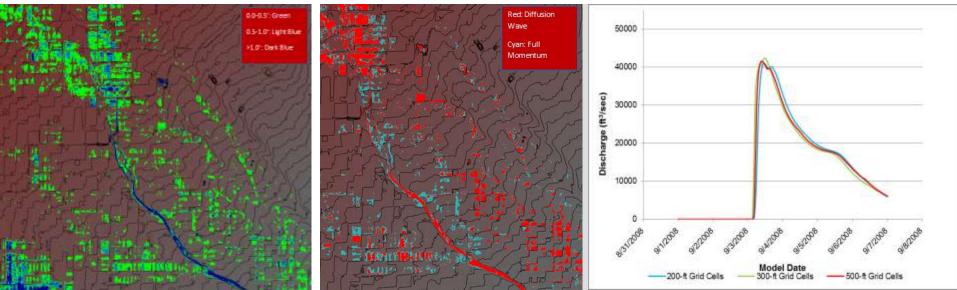


Hydraulic Modeling Inputs (ground breaking...)

- Approach Based!
- Field Work
 - $_{\circ}$ GIS Database
 - $_{\circ}~$ Sediment samples
 - $_{\circ}~$ Joint effort with USACE
- Topography

 Very detailed
- Aerial imagery

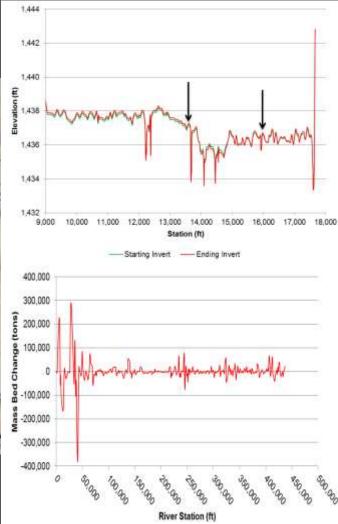

20- 10 20- 10



*Have approximate flow paths identified before going into the field

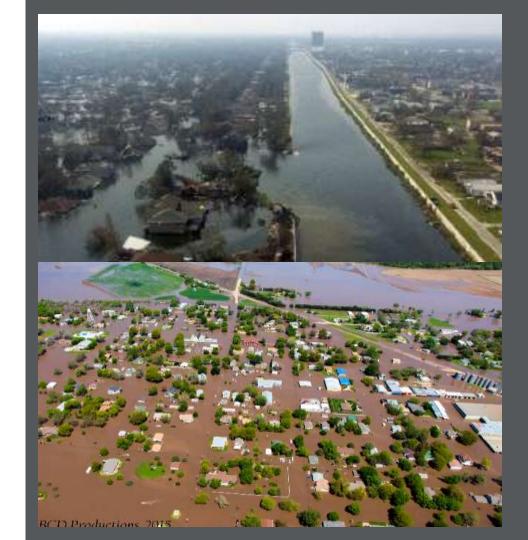
Sensitivity Analysis

- Grid Size
- Computation Equations
- Time Step
- Boundary Conditions
- Breaklines, Breaklines, Breaklines

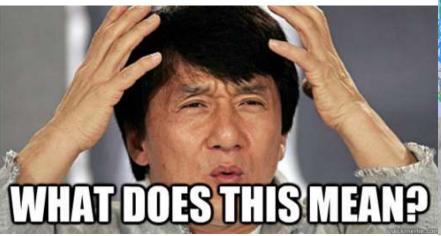


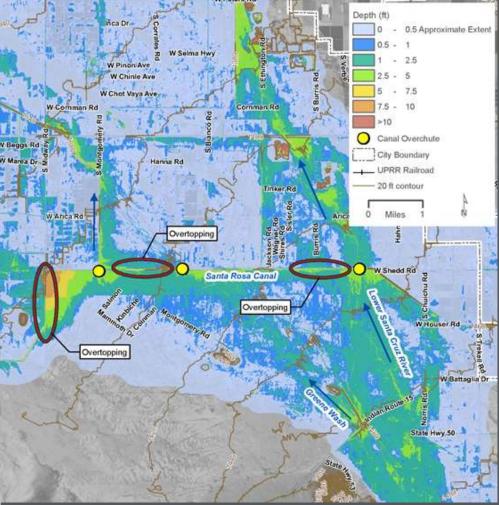
Long Term Channel Evolution

- Concerns
 - $_{\circ}~$ Indicators of deposition and erosion
 - Channelized reaches and braided reaches
 - Crossing structures
 - $_{\circ}$ Flood impacts
- Approaches
 - Use 2D results to inform 1D sediment model
 - \circ Identify TRENDS
 - Confirm horizontal TRENDS

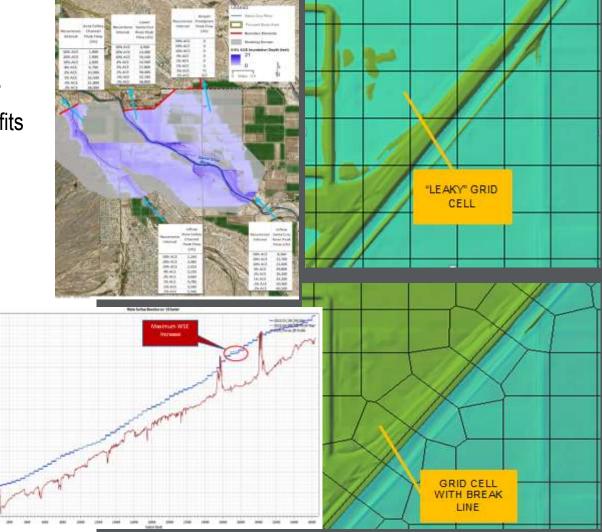


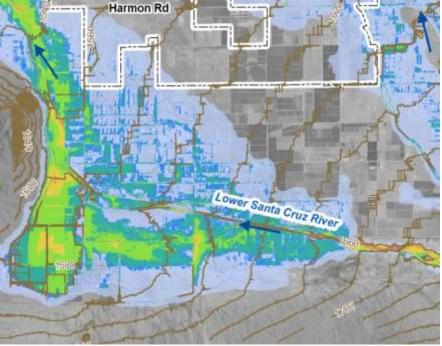
1D Channelized Approaches with 2D Tools...


- Flood breakout areas
 - \circ Levee vs. Braided
- Similar land use areas


 Desert vs. Rural
- Flood frequency analysis
 - $_{\circ}~$ Levee vs. Braided

What did we learn?


- Modeling Approaches
- Modeling Result Application
- Presentation of Results
- All Hands on Deck!


Modeling Approaches

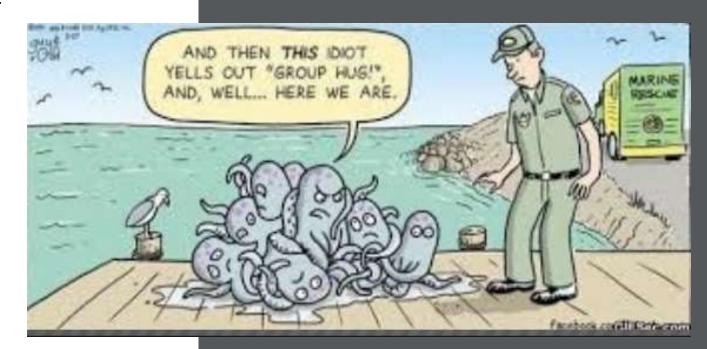
- Understand Model Limitations/Benefits
- Complete Sensitivity Analysis!!
- Agree on Model Purpose
 - $_{\circ}$ Inundation Mapping
 - $_{\circ}$ Flow Concentration
 - Accuracy
- Understand Modeling Approach
 - $_{\circ}$ Bridges
 - $_{\circ}$ Breaklines
 - \circ Culverts
 - $_{\circ}$ Equations
 - $_{\circ}~$ Boundary Condition

Modeling Result Application

- Understand Results
- Establish Confidence in Results

Presentation of Results

- Internal/External Audience
- Discussion Based
- Detail Based
- What are we showing?
- Modeling Result Application



All Hands on Deck!

- New Process and Software Requires:
 - $_{\circ}~$ Communication at all Levels!
 - $_{\circ}~$ Addressing all Concerns!

THANK YOU!