

HOW TO REVIEW 2D MODELS AND WHAT TO SUBMIT IN CLIENT SUBMITTALS

Presented By:

Cameron Jenkins, Atkins

Eric Simmons, FEMA

Scott Hogan, FHWA

66

The good news about computers is that they do what you tell them to do. The bad news is that they do what you tell them to do.

-Ted Nelson

Presentation Overview

History

2D Guidelines

How to Review 2D Models

What to Submit to Clients

History

History

then to now...

8:50

1- Day of 2-D Highlights

2-D MODELING SYMPOSIUM INTERA

2D MODELING 5-STEP REVIEW PROCESS

Sacramento, California * S PREPARE

Kathy Schaefer, Symposium

SYMPOSIUM OBJECTIVE: To discuss issues and identify needed communities regarding the use of 2-Dimensional hydraulic mod riverine flood analysis.

(Speakers at the Symposium and participants in the Challenge N

arrest and male

10-Chamels

Calibration

Plets/maps

ACTIVITIES

8:30 WELCOME AND INTRODUCTIONS

> HOW DO 1-D AND 2-D MODELS MAKE THEIR WAY ONTO FEMA MAPS AND HOW DO COMMUNITIES LISE THIS INFORMATION TO ADMINISTER THE NATIONAL FLOOD INSURACE

2D Guidelines

2D Guidelines Categories

Pre-Modeling Guidelines
Planning

Modeling Guidelines

User Manuals

Best Management Practices

Post-Modeling Guidelines

Deliverables

2D Guidelines Document

Discussion of 2D Models

Data Requirements

2D Modeling References

Modeling and Mapping

Model Review

What to Submit for Review

What to Submit to FEMA

FMA CONFERENCE 2017 2D modeling and submittal guidelines Appendix includes references and Checklists

http://html.investis.com/A/Atkins/FMA.zip

How to Review 2D Models

2D MODELING 5-STEP REVIEW PROCESS

http://html.investis.com/A/Atkins/FMA.zip

"Getting up to Speed Phase":

Purpose of the analysis

Who is the analysis for? (FEMA, local Agency, Federal Highways)

Do you have the ability to review it? (Qualifications and Resources)

Am I Independent?

What elements of the analysis require review?

"Getting up to Speed Phase":

Is the time allotted for review adequate (schedule)?

What is the intended projection and datum for the analysis?

Data: What format is it in? how do we obtain it? Is it ready for review?

What level of QA/QC information is required? (work with model preparation team with this in advance)

Do I have adequate software to review (version number, known bugs or issues, etc...)

Items to Obtain:

Report or Technical Memorandum Summary

Agency Requirements, Standards, Policies, Protocols, Guidelines

Model Input and Output

Horizontal and Vertical Datum

Structure Data: surveys, measurements, photographs

Items to Obtain:

Terrain Data: survey points, TIN, DEM, LiDAR, etc...

Resource Data: soils, land cover, erosion potential, infiltration, aerial imagery, impediments

Rainfall Data: rainfall specifications and methodology (or other source for inflows)

QA/QC Documentation

Data Types: GIS/database/CAD/spreadsheet, MT forms, hardcopy Maps, emails, etc...

Input to Review:

Boundary Conditions Verification

Terrain Review

Model Geometry Decision Review

Roughness Review

Input to Review:

Model Control Variable Inputs Review

Structures, Special Facilities and other embedded 1D Elements Input Review

Infiltration

Levees and Walls

What can be/needs to be reviewed is very dependent on which software is being used

It is important in ALL CASES to review:

Primary Variable Results (wse and velocity)

Secondary Variable Results (depth, flow, D*V, Fr)

Tertiary variable results (mass/volume, sticky cells, and warnings/errors)

1D elements channels, pipes, ditches, etc

Levees and Walls

Flooding Extents

Calibration

Documentation, plots and exhibits

RE-EXECUTE THE MODEL

Animation

Use a SYSTEM of Review and DOCUMENT every step of the review:

Document who performed which elements of the review

Document each step of review each so subsequent review does not have to repeat a review of a previously reviewed element:

Reviewers could highlight in yellow items that were verified, in red things they found in error

Comments need to be documented or summarized when returned

Provide a means for the Project Team to respond to comments in an orderly way:

Provide a means to chronology back checks and responses

How to Review 2D Models Member of the SNC-Lavalin Group 5. QA/QC Documentation Review

ATKINS NORTH AMERICA QA/QC - FLO-2D REVIEW CHECKLIST Project Title: Project No.: Project Task: Date Submitted for Review: Date of Review: Preparer Name: Reviewer Name: Reviewer Company: Preparer Company: Item **Hydraulic Model Review Item Response to Comments** Comments | Status No. 1. Data Requirements FLO-2D model version documented? Vertical and horizontal datum of project provided? Topographic information provided (vertical and horizontal datum, what kind)? If multiple data sets are used, are the extents for each one known? Soil data information used documented and provided? 100 Land use information documented and provided? 100 Documentation on techniques and procedures provided? 1.6 2. SUMMARY.OUT Check total rainfall volume. Check total inflow volume. Check percent infiltration. In general, should be 20-40% for heavily urbanized, 25-50% for urbanized, and 40-70% for natural of total rainfall. Verify that volume conservation errors are minimal. Verify that the file was written to completion. 3. CONT.DAT Check the limiting Froude number setting (typically 0.9-0.95 unless in steep areas). Check that the Shallow n value is reasonable (typically 0.1-0.2, but it may be turned off for some projects). Verify that model run time is adequate (i.e., all TIMETOPEAK.OUT values < run time). Check to see if IBACKUP switch is turned off to increase model speed. Check that all required component switches are turned on. 4. TOLER.DAT Check TOL value to make sure it is reasonable; if this is a hydrology model, it should be lowered to 0.03 or smaller. If rainfall model, check TOL and see if it correlates to IA. TOL should be subtracted from IA to avoid double counting. (10) (TOL is in feet, IA is in inches) Verify that DEPTOL is a reasonable value, if set to 0, it is turned off. 33.3 WAVEMAX should normally be set to 0, which turns it off and speeds up the model runtime. It may need to be turned on

What are the Data needs to make this Happen?

What You Should Submit

Folder Structure

Organized

Readme File

List of data being provided

Don't make FEMA search through thousands of documents

- 🗸 J Study Area Name
- ∨ 🌏 1_Data Collection
 - Aerials
 - AsBuilts
 - FEMA
 - Field Investigation
 - GIS
 - Previous Studies
 - Storm Drain
 - Topograpohic Data
- ✓ J 2_Hydrology
 - Calculations
- V 🚮 Calibration
 - Event 1
 - Event 2
 - Event 3
- 🗸 J Design
 - 100 Year Event
 - J 500 Year Event
 - PMF Event
 - FFA
 - GIS

- V 🌄 3_Dam Breach
 - Calculations
 - Design
 - GIS
 - Sensitivity
- 4_Hydraulics
 - Calculations
- ✓ Calibration
 - Event 1
 - Event 2
 - Event 3
- 🗸 🌏 Design
 - 100 Year Event
 - 500 Year Event
 - PMF Event
 - GIS
- 5_Floodplains
 - GIS
 - Workmaps
 - 6_Report
 - 7_MT-2 Forms

Report

Title Page

Table of Contents

Section 1 Introduction

Section 2 FEMA Forms

Section 3 Survey and Mapping info

Section 4 Hydrology

Section 5 Hydraulics

Section 6 Erosion, Sediment Transport, and Geomorphic Analysis

Section 7 Draft FIS Data

Appendix A References

Appendix B General Documentation

and Correspondence

Appendix C Survey Field Notes

Appendix D Hydrologic

Documentation

Appendix E Hydraulic Documentation

Appendix F Erosion, Sediment

Transport, and Geomorphic

Documentation

Exhibit Maps

Data Collection and Correspondence

As-builts

Imagery

Field notes

Meeting notes

Previous studies

Effective FEMA Data

Model Files

GIS Layers

Terrain

Correct model files

Floodplains

Raw data

Inputs

Cross-sections

Final terrain

Outputs

BFE's

Datums

Existing conditions

Channel centerline

Certification of data

Proposed conditions

Levees

Calibration

Other useful data

Workmap

Legend Base Flood Elevation **Sheet Matchline** Stream Centerline Limit of Study Township-Range Section Lines Index Contours Intermediate Contours Effective FEMA SFHA **Revised Floodplains** AO, Depth 2 AO, Depth 1 & Vel 3 AO, Depth 2 & Vel 6 AO, Depth 1 & Vel 4 AO, Depth 2 & Vel 10 AO, Depth 1 & Vel 6 AO, Depth 3 & Vel 10 Shaded Zone X (500-year)

Annotated FIRM Map

Analysis Grids

Depth Grids

Water Surface Grids

Velocity Grids

See FEMA Guidance

Flood Severity/Hazard Grid (Optional)

Depth * Velocity

Different methods

USBR

Australia

Europe

See FEMA Guidance

Model results are just approximations and should not just be accepted as absolute (Engineers Australia 2012)

Questions

How to Review a 2D Hydraulic Model and What to Submit Cameron.Jenkins@atkinsglobal.com

Common MT-2 Mistakes

General Mistakes

MT-2 Forms Missing/Incorrect

Missing back-up data

No as-builts

Missing Annotated FIRM

Notifications to public of BFE increase or floodway change

Community Acknowledgement

General Mistakes

State and Local regulations may be different than FEMA's

Incorrect effective info used check for LOMRs

Comparing wrong effective data with proposed data

Two adjacent studies being done at the same time

MT-2 Hydrology Mistakes

Unaccepted model or hydrology used
No backup to models

MT-2 Hydraulic Mistakes

Unaccepted model used

No backup to models

Model sequence (Effective, Duplicate Effective, Existing, Proposed

MT-2 Hydraulic Mistakes

Levees/walls

65.10 requirements

Incorrectly modeling uncertified levees

Missing structural information

Results don't match calibration data

MT-2 Mapping Mistakes

Not providing Topographic workmap

Missing data on workmap

Vertical datum not included

Mapping an uncertified levee

Tie-ins are not within 0.5 ft

Awkward transitions in floodplain/floodway widths

Model does not match maps

No profiles for 2D areas

Review MT-2 Application

Include all backup data

Good explanations in report

QA/QC

