Outline

- Background
- History
- Goals
- Approach
- Next Steps
- Takeaways
City of Colorado Springs incorporated 1886

2nd most populous city in Colorado but largest by area – 195 mi2

Semi-arid – 16 in/yr

Mobile streambeds

Floodplains – 160-mi

Fountain Creek Watershed – 460 mi2
1990 – Southern Delivery System (SDS) Planning Begins
1997 – 1st Colorado Springs MS4 permit
2005 – Stormwater Enterprise Approved
2009 – Stormwater Enterprise Ended by City Council
2012 Waldo Canyon Fire 2014 Black Forest Fire
2014 – Drainage Criteria Manual Adopted
2015 – EPA MS4 permit notice of violation
2016 – Pueblo County Inter-Governmental Agreement (IGA)
2016 – SDS begins operation
2017 – Stormwater fee re-established
Problems
Project Goals

- GIS-based web application for CIP planning
- Existing infrastructure gaps
- CIP prioritization and budgeting tool
- Create a Stormwater Channel Assessment Program framework
- BMP tracking system
Colorado Springs Utilities
Operations & Maintenance
Development Review
Fountain Creek Watershed Flood Control & Greenway District
CIP Delivery
Parks & Open Space
GIS and IT
Benchmarking

- City of Aurora
- City & County of Denver
- Urban Drainage & Flood Control District

- Project Definitions
- Sub-Projects
- Prioritization
- Querying
- Cut Sheets
- Work Flow
- Cost Index
- Editability
- Accessibility
Data Collection – Field Review

- Over 258 mi of open channel
 - 37 major drainage basins
 - 63 mi improved/195 unimproved
 - 1,260 grade control structures
 - 800+ existing BMPs

- GIS data
 - Tablet data collection
 - Geolocated photos
Data Collection – Field Review

Parameters collected

- Location - GPS
- Improvement type
- Condition
 - Tier 1
 - Tier 2
- Height
- Vegetation
Tier 1 – Infrastructure Condition
- Health/safety/flooding
- Channel stability
- Utility risks
- Road/bridge/structure risk
- Criteria – headcuts, unstable banks, severe floodplain disconnect, undermined drop structures

Tier 2 – Corridor Function
- Recreation
- Habitat/riparian function
- Aesthetics
- Criteria – geomorphic floodplain connection, vegetation quality and connection, bedrock
Field Assessment

Tier 1 – Infrastructure Condition: Examples

- Good (green) – healthy stream corridor; sustainable [35%]
- Fair (yellow) – some instability but no adjacent risks; at risk in large flood; maintenance [50%]
- Poor (orange) – instability with adjacent risks; could need a CIP [10%]
- Critical (red) – needs immediate attention; imminent risk [<5%]
Tier 2 – Corridor Value: Examples

- **Good (green)** – healthy stream corridor; high aesthetic and habitat value [30%]
- **Fair (yellow)** – some impaired habitat but mostly functioning [45%]
- **Poor (orange)** – disconnected floodplain, sparse vegetation [20%]
- **Critical (red)** – minimal habitat value[<5%]
Field Assessment

Examples

- Tier 1 – Good
- Tier 2 - Poor
Over 400 documents
- Plans/Reports
- IGA Projects
- Needs Assessment
- Databases
- Spreadsheets
- Hand written notes
- Individual staff knowledge

GIS data
PROJECT ORGANIZATION: INVENTORY SPREADSHEET

<table>
<thead>
<tr>
<th>No.</th>
<th>ID</th>
<th>Cost Table (SIMP ID) (NEW)</th>
<th>Attribute Only (SIMP ID) (New)</th>
<th>Improvement Name</th>
<th>Location (Street Names)</th>
<th>Drainageway</th>
<th>...</th>
<th>Category</th>
<th>Description</th>
<th>Unit</th>
<th>Quantity</th>
<th>Unit Cost</th>
<th>Cost Subtotal</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-0</td>
<td>-</td>
<td>-</td>
<td>Sand Creek DBPS - Detention Basin Cost Estimate</td>
<td>Sand Creek Basins</td>
<td>-</td>
<td>0 - Project summary</td>
<td>-</td>
<td>-</td>
<td>LS</td>
<td>1</td>
<td>$$$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1-1</td>
<td>SC-C6</td>
<td>-</td>
<td>Sand Creek DBPS</td>
<td>Lower Sand Creek</td>
<td>Sand Creek</td>
<td>X - Channel - Grade Control</td>
<td>Grade control</td>
<td>EA</td>
<td>6</td>
<td>$27,000</td>
<td>$162,000</td>
<td>Constructed</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1-2</td>
<td>SC-C6</td>
<td>-</td>
<td>Sand Creek DBPS</td>
<td>Lower Sand Creek</td>
<td>Sand Creek</td>
<td>X - Channel - Lining</td>
<td>Sel linings (1 side)</td>
<td>LF</td>
<td>350</td>
<td>$127</td>
<td>$44,450</td>
<td>Not constructed</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1-3</td>
<td>EFSC-C8</td>
<td>-</td>
<td>Sand Creek DBPS</td>
<td>East Fork Sand Creek Tributaries</td>
<td>East Fork Sand Creek</td>
<td>X - Channel - Lining</td>
<td>Selective riprap lining</td>
<td>LF</td>
<td>5700</td>
<td>$85</td>
<td>$484,500</td>
<td>Not constructed</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1-4</td>
<td>EFSC-D1</td>
<td>-</td>
<td>Sand Creek DBPS</td>
<td>Constitution Ave and East Fork Sand Creek</td>
<td>East Fork Sand Creek</td>
<td>X - Detention</td>
<td>Public regional 100-year detention with water quality (278 AF)</td>
<td>AC-FT</td>
<td>278</td>
<td>$10,000</td>
<td>$2,795,000</td>
<td>Not constructed</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1-5</td>
<td>EFSC-D1</td>
<td>-</td>
<td>Sand Creek DBPS</td>
<td>Constitution Ave and East Fork Sand Creek</td>
<td>East Fork Sand Creek</td>
<td>X - Detention</td>
<td>Land acquisition</td>
<td>AC</td>
<td>26.9</td>
<td>$15,900</td>
<td>$427,710</td>
<td>Not constructed</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1-6</td>
<td>EBSC-B160</td>
<td>-</td>
<td>Sand Creek DBPS - Roadway Culvert Crossing Cost Estimate</td>
<td>Bridlespur Road</td>
<td>East Bierstadt Creek</td>
<td>X - Culvert</td>
<td>3-8'Hx10'W CBC</td>
<td>LF</td>
<td>160</td>
<td>$750.00</td>
<td>$120,000</td>
<td>Not constructed</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1-7</td>
<td>EBSC-B47A</td>
<td>-</td>
<td>Sand Creek DBPS - East Fork Sand Creek Bridge Crossing Cost Estimate</td>
<td>Unnamed Roadway</td>
<td>East Bierstadt Creek</td>
<td>X - Bridge / Full span</td>
<td>3-10'Hx14'W CBC</td>
<td>LF</td>
<td>250</td>
<td>$1,250.00</td>
<td>$312,500</td>
<td>Not constructed</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- **Summary of costs by document.**
- Project Improvements identified in the reviewed document.
- Steps in inventory spreadsheet to define project organization.
Prioritization

Planning
- Drainage Basin Planning Studies
- Existing Infrastructure Needs Assessment

Condition

Capacity
Planning Prioritization

Table: Planning Prioritization

<table>
<thead>
<tr>
<th>Drainage Basin</th>
<th>DBPS Published Date</th>
<th>Age of DBPS</th>
<th>Design Standard</th>
<th>Degree of Future Development</th>
<th>Existing Regional Detention</th>
<th>Future Regional Detention</th>
<th>Potential Natural Stream Preservation/Restoration Opportunities</th>
<th>Closed Basin</th>
<th>City-Input (based on economic, social and political climate at the time of ranking)</th>
<th>Weighted Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score Range</td>
<td>-</td>
<td>0-3</td>
<td>0-4</td>
<td>0-3</td>
<td>0-3</td>
<td>0-3</td>
<td>0-1</td>
<td>0-1</td>
<td>0-5</td>
<td>0-100</td>
</tr>
<tr>
<td>Scaling Multiplier</td>
<td>-</td>
<td>5</td>
<td>5</td>
<td>12</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>6</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Black Canyon</td>
<td>02/01/80</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>63</td>
</tr>
<tr>
<td>Black Squirrel Creek</td>
<td>01/01/89</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>61</td>
</tr>
<tr>
<td>North Douglas Creek</td>
<td>03/01/81</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>57</td>
</tr>
<tr>
<td>South Douglas Creek</td>
<td>03/01/81</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>57</td>
</tr>
<tr>
<td>Mesa</td>
<td>03/01/86</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>57</td>
</tr>
<tr>
<td>Sand Creek (including Upper Sand Creek)</td>
<td>03/01/96</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>57</td>
</tr>
<tr>
<td>Camp Creek</td>
<td>10/01/64</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>56</td>
</tr>
<tr>
<td>Westside</td>
<td>10/01/75</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>55</td>
</tr>
<tr>
<td>Peterson Field (Sand Creek)</td>
<td>08/01/84</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>55</td>
</tr>
</tbody>
</table>
LEVEL 1/ LEVEL 2 – LANDOWNER SCALE
Prioritize Highest Need Drainage Basins

Parcelscale
(mid-to-upper watershed)

- Acres untreated by BMPs (BMP layers)
- Bank condition weighted by miles of open channel (Field inspection)
- Unplatted acres (DBPS scoring)
- Percent imperviousness (City layers -LU)
- Closed basins (City list)
- Social issues (City layers)
 - Low/Moderate Income Areas (LMI)
 - Affordable Housing Units
 - Economic Opportunity Zones
- 303(d) listings by impairment (CDPHE)

Reach-scale
(lower watershed)

- Erosion potential
 - Bank height (Field inspection)
 - Bank cover (Field inspection)
 - Soil type/ K-value (NRCS)
- No. of utilities within a buffer (City layers)
- Other at risk infrastructure (City layers)
 - Building footprint
 - Highway buffer layer
 - Schools, hospitals, and other institutions
 - Trails
- Project identification (SIMP Database)

LEVEL 2 – PARCEL & REACH SCALES
Prioritize Highest Risk Locations Within Drainage Basins

- Parcel ownership – Public vs. Private (City layers)
- Zoning – Residential vs. Industrial Uses (City layers)
- Hydrologic Soil Group – A & B vs. C/D (NRCS)
- Project identification weighted by source & date (SIMP Database)

LEVEL 3 - PROJECT SCALE
Prioritize Solutions by Project Type

- Pollutant removal
- Project cost

- DETENTION (OFF-LINE)
- STORM/ OTHER
- GRADE CONTROL
- CHANNELS
- BRIDGES/ CULVERTS
- DETENTION (ONLINE)

Colorado Springs Stormwater Infrastructure Master Plan
Next Steps

- Project Identification
- Project Prioritization
- Develop Web Application
Evolution is painful
Deferred maintenance is not the sum of its parts
Leverage existing data
Listen to users
Communicate
City Project Manager – Tim Biolchini
Engineering Stormwater Division Manager – Richard Mulledy
Stormwater Capital Programs Manager – Brian Kelley