MATS-TC: Automating Time of Concentration Through Multidisciplinary Collaboration

2018 ASFPM Annual Conference

Taylor Leahy, PE
Andrew C. Reicks, CFM
MATS-TC: Automating Time of Concentration Through Multidisciplinary Collaboration

- Taylor Leahy, PE
 - Water Resources Engineer
 - FEMA H&H Studies

- Andrew C. Reicks, CFM
 - GIS Specialist
 - Process Development & Scripting
Overview

- Time of Concentration
- Previous process
- Full Automation
- Outcome
- Moving Toward the Future
Time of Concentration
Time of Concentration

- Time of concentration (Tc) is the time required for runoff to travel from the hydraulically most distant point in the watershed to the outlet.
Velocity Method

- Adds the travel time of various flow types, the sum is the watershed’s TC
- Three main flow types
 - Sheet
 - Shallow Concentrated
 - Channel
- Each flow has its own formula for travel time
Travel Time Formulas

- **Sheet**

\[
T_t = \frac{0.007(n\ell)^{1.8}}{(P_2)^{0.5}S^{0.4}} \quad \text{(eq. 15-8)}
\]

where:
- \(T_t\) = travel time, h
- \(n\) = Manning's roughness coefficient (table 15–1)
- \(\ell\) = sheet flow length, ft
- \(P_2\) = 2-year, 24-hour rainfall, in
- \(S\) = slope of land surface, ft/ft

- **Shallow Concentration**

- **Channel**
"I HAD MY DOCTOR DO A D.N.A. BLOOD ANALYSIS. AS I SUSPECTED, I'M MISSING THE MATH GENE."
Types of Inputs

- Engineering Judgement
 - Depth/width/etc.
 - Channel Segmentation
 - Surface Description
 - Manning’s N
- Manual Editing
 - Rainfall (2yr, 24hr)
 - Channel Segmentation
- Arc Calculations
 - Slope
 - Length

- To still be automated
 - Landcover/Surface Description
 - Manning’s N
Example

- Base spreadsheet
- One per subbasin
- Heavy on manual manipulations
 - Summing the total
 - Hard to adjust/edit
 - Tedious
 - Poor Readability
 - Difficult to QC
 - Cumbersome to share
Manual Process

- Inputs created manually
 - Stream widths & depths
 - Stream segment splitting
 - Stream segment attribution

- Data Calculations
 - Data exported, processed, imported back
 - Formula components added manually
 - Large file size
The Beginning

- **Simple question**
 - Split line segments 0 – 100 feet | 100 feet – end

- **Questions of increasing complexity**
 - Add slope to each segment
 - Time of concentration calculations

- **Key indicators**
 - Repetitive; Multiple steps/outputs; Multiple data formats
Full Automation
Jumping Off Point

- Automating engineering decisions
 - Feasibility
 - Time
 - Level of effort
 - Accuracy
 - Quality
MATS Process

- Multi-disciplinary Automated Technical Solution
 - Collaborative approach
 - Finding commonalities
 - What’s needed/what’s possible/what’s available
 - Identify critical elements
Outcome
MATS-TC

- Process/Format Data
- Create TC Inputs
- Calculate Time of Concentration

QA/QC
Results and Benefits

- **TC**
 - Accuracy
 - Speed
 - Repeatability
 - Data Integrity
 - Project Time
 - Manual Processing
 - Subjective Decision Making
 - Human Error

- **MATS**
 - Collaboration
 - Communication
 - Innovation
 - Interdisciplinary Understanding
Moving Toward the Future
Next Steps

- **TC**
 - Refine as more areas are studied
 - Improve error handling and documentation
 - Test and update for a variety of different areas and situations

- **MATS**
 - Make collaboration contagious
 - Increase interdisciplinary understanding
 - Apply method to other workflows
Thank you!

- Questions? Please email us:
 - Taylor: LeahyT@cdmsmith.com
 - Andrew: ReicksA@cdmsmith.com