The Mighty Mississippi:
Development of Mighty 2D Models
Introduction

• Jake Lesué, PE, CFM

M.S. Civil Engineering – Brigham Young University
Background
Background
Purpose of Study

• Develop regional hydraulic models on Red River and Black River in LA

• Determine natural valley flood extents in areas with de-accredited levee systems

• Establish basis for future LAMP studies with regional H&H data
What is LAMP?

• Levee Analysis and Mapping Procedures for Non-Accredited Levees (LAMP)

• 5 Procedures outlined in the LAMP Final Approach Document
 • Natural Valley
 • Sound Reach
 • Freeboard Deficient
 • Overtopping
 • Structural-Based Inundation
Non-Accredited Levee Systems

- Concordia-Black River Levees
- Lake Larto Ring Levee
- Louisiana Delta Plantation Levee
- Vick Levee
- Brouillette Levee
- Atchafalaya River Levee
- Red River East and West Bank Levees
Model Selection Considerations

• FEMA FIS does not have a detailed study in the region. BFEs from gage frequency analysis.

• USACE previously developed models were developed for conveyance between the levees.

• Natural Valley analysis needed for flat Mississippi River Delta
Mississippi Backwater Areas

- Loss of flood storage with construction of Mississippi River West Bank Levee
- Backwater areas naturally occur where gaps in levee occur near tributaries
- 1941 Flood Control Act authorized plan to protect Red River back water area.
Model Selection Considerations

The Mighty Mississippi: Development of Mighty 2D Models
June 23, 2016
Model Selection Considerations
What Causes a Significant Flood?
What Causes a Significant Flood?

<table>
<thead>
<tr>
<th>Gage Name</th>
<th>Elev.</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acme (Red/Black)</td>
<td>60.08</td>
<td>161</td>
</tr>
<tr>
<td>Alexandria (Red)</td>
<td>89.49</td>
<td>143</td>
</tr>
<tr>
<td>Natchez (Mississippi)</td>
<td>72.48</td>
<td>17</td>
</tr>
<tr>
<td>Red River Landing (Mississippi)</td>
<td>59.89</td>
<td>34</td>
</tr>
<tr>
<td>Monroe (Ouachita)</td>
<td>81.80</td>
<td>97</td>
</tr>
<tr>
<td>Columbia L&D (Ouachita)</td>
<td>70.10</td>
<td>42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gage Name</th>
<th>Elev.</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acme (Red/Black)</td>
<td>56.68</td>
<td>40</td>
</tr>
<tr>
<td>Alexandria (Red)</td>
<td>82.26</td>
<td>7</td>
</tr>
<tr>
<td>Natchez (Mississippi)</td>
<td>70.68</td>
<td>9</td>
</tr>
<tr>
<td>Red River Landing (Mississippi)</td>
<td>57.19</td>
<td>12</td>
</tr>
<tr>
<td>Monroe (Ouachita)</td>
<td>78.70</td>
<td>16</td>
</tr>
<tr>
<td>Columbia L&D (Ouachita)</td>
<td>69.10</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gage Name</th>
<th>Elev.</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acme (Red/Black)</td>
<td>58.73</td>
<td>88</td>
</tr>
<tr>
<td>Alexandria (Red)</td>
<td>79.26</td>
<td>4</td>
</tr>
<tr>
<td>Natchez (Mississippi)</td>
<td>73.98</td>
<td>30</td>
</tr>
<tr>
<td>Red River Landing (Mississippi)</td>
<td>58.22</td>
<td>19</td>
</tr>
<tr>
<td>Monroe (Ouachita)</td>
<td>80.72</td>
<td>39</td>
</tr>
<tr>
<td>Columbia L&D (Ouachita)</td>
<td>70.60</td>
<td>51</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gage Name</th>
<th>Elev.</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acme (Red/Black)</td>
<td>48.41</td>
<td>4</td>
</tr>
<tr>
<td>Alexandria (Red)</td>
<td>67.62</td>
<td>1</td>
</tr>
<tr>
<td>Natchez (Mississippi)</td>
<td>79.11</td>
<td>500</td>
</tr>
<tr>
<td>Red River Landing (Mississippi)</td>
<td>63.04</td>
<td>105</td>
</tr>
<tr>
<td>Monroe (Ouachita)</td>
<td>61.95</td>
<td>1</td>
</tr>
<tr>
<td>Columbia L&D (Ouachita)</td>
<td>54.50</td>
<td>2</td>
</tr>
</tbody>
</table>
Hydrograph Development
Model Inflow
Initial Model Setup

• Initial model run time was over 4 days.
• Time to open model and make edits took over 1 hour.
• Needed to develop model that would run significantly faster.
• Initial grid was rectangular covering approx. 4,300 square miles.

• Developed boundary for 2D region and clipped grid to boundary reducing to 1,530 square miles. Almost $3\times$ smaller.
Grid Data

- Terrain grids for Natural Valley simulations were reduced further by clipping to levees not in system
Land Use

- Began using the NLCD 2011 dataset in shapefile format converted from raster.
Land Use

• Switched to a more generalized dataset by using the 1980 GIRAS.

• Reduced vertices in database by almost 15x.

• This alone fixed the long wait times to open model. Now only 10 seconds.
Grid Size

- Experimented with several computational runs at various grid step sizes.
- Calibration runs were performed with largest grid step size without causing instability.
Computational Time Step

- Input hydrographs varied from 50 to 100 days.
- Computational time steps played a dramatic role in model run time with excessive hydrograph lengths.
- Time steps were adjusted to larger values as long as model remained stable.
- 1D – 1 hour, 2D – 30 seconds
- Output time steps also increased, 2D – 1 hour.
Hot Start Files

• Flood Hydrographs for large watersheds are relatively long in duration.

• Using hot start files were successful in reducing the model duration by only modeling peak time frame.
Hot Start Files

• Hydrograph duration reduced by a minimum of 30%
Conclusions

• Large scale modeling begins to tax your computer hardware and software.

• Methods can be implored to reduce model computation time.

• Can these generalized modeling methods be used to develop detailed FIS studies?
Questions