Selecting Dam Breach Inundation Software

Observations from Kentucky

Carey Johnson
Trevor Timberlake
Davis Murphy
ACKNOWLEDGEMENTS

FEMA – Funding Source of Project
- James E. Demby, Jr., PE - Program Manager - FEMA National Dam Safety Program
- Katy Goolsby-Brown, PE, CFM - Mitigation Engineer - FEMA Region IV

Kentucky Dam Safety – Modeling, State needs, & Project Overview
- Brian Shane Cook, PE, LSIT - Engineering Supervisor (Now with state of NC)
- Gary Wells, PE – Engineering Consultant

AECOM – Modeling & Project Delivery
- Jimmy Stahl, PE, CFM – Engineering Manager
- Trevor Timberlake, PE, CFM – Engineering Project Manager (Now with state of AR)
- Davis Murphy, PE, CFM – H&H Modeling

T&M Associates – Hazus & Literature Review
- Thomas Tri – Principal Engineer

Stantec – Previous Modeling of Hazard Mitigation Grant
- Jon Keeling, PE, CFM, M.ASCE – Project Manager/Senior Engineer
BACKGROUND

FEMA Hazard Mitigation Grant

Rapid Inundation Mapping
– 180 models using Geo-Dam-BREACH

Enhanced Inundation Mapping
– 7 models using HEC-RAS 1D
– 2 models using FLO-2D

Questionable Inundation Results:
– Low Head dams
– Dams in areas of flat topography
– Dams that are small in size
STUDY PURPOSE

- FEMA’s development of GeoDamBreach
- Questions about models and their intended use
 - Which models should be used in what situations?
- Pilot study
 - Compare several software packages
 - DAMBRK (1-D)
 - FLO-2D (2-D)
 - GeoDamBreach (1-D)
 - DSS-WISE (2-D)
 - HEC-RAS (1-D/2-D, unsteady-state)
 - HAZUS-MH
- Inform dam safety community about model selection
 - Decision was to focus on qualitative approach
STUDY APPROACH

Methods, Assumptions, and Data
STUDY APPROACH – METHODS AND ASSUMPTIONS

– Comparing model simulations:
 • Used previously completed dam breach studies by KDOW
 • Used existing models
 • Created new simulations

– Used breach hydrographs from existing studies
 • Where necessary, used existing studies’ breach parameters

– Dam breach inundation zones delineated using best available elevation data

– HAZUS-MH runs compared using output from all models at a single dam site

– Questionnaire → Lessons Learned/Best Practices
STUDY APPROACH – DATA

14 Dam Breach Studies:

Dam heights: 8 – 77 ft
Normal Pool volumes: 0 (dry) – 7,944 acre-ft

<table>
<thead>
<tr>
<th>Dam Name (NID-KY#)</th>
<th>Height (ft)</th>
<th>Normal Pool Vol. (acre-ft)</th>
<th>Boss-DAMBRK</th>
<th>DSS-WISE Lite</th>
<th>SMPDBK/GeoDB</th>
<th>HEC-RAS 1D</th>
<th>HEC-RAS 2D</th>
<th>FLO-2D</th>
<th>HAZUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beech Creek (0043)</td>
<td>67</td>
<td>881.6</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Willisburg (0103)</td>
<td>77</td>
<td>1610.4</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Big Bone Lick (0307)</td>
<td>65</td>
<td>185</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marion County (0020)</td>
<td>33</td>
<td>218.3</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feltner (0105)</td>
<td>24</td>
<td>40</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Martin County (0109)</td>
<td>40</td>
<td>85</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campbellsville (0155)</td>
<td>49</td>
<td>949</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SF Beargrass (1003)</td>
<td>60</td>
<td>605</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roberson Run (1115)</td>
<td>17</td>
<td>Dry</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Game Farm Upper (0372)</td>
<td>20</td>
<td>41.3</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woodlake (1130)</td>
<td>29</td>
<td>27.4</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guist Creek (0040)</td>
<td>60</td>
<td>7944</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitesburg (0075)</td>
<td>8</td>
<td>13.1</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scenic (0012)</td>
<td>25</td>
<td>229.6</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BOSS-DAMBRK

- User interface by Boss International (now part of Autodesk)
- Engine is DAMBRK from NWS
- Has since been replaced by FLDWAV
- One dimensional, unsteady-state model
- DOS-BASED

- Input
 - Typical breach parameters or hydrograph
 - Cross section data
 - Bridge/culvert geometry or rating curves

- Output
 - High water profiles
 - Flood arrival times
 - Hydrographs at selected locations
DSS-WISE

- DSS-WISE = “The Decision Support System for Water Infrastructural Security”
- Funded by DHS, developed by the NCCHE at Ole Miss
- Web-based platform, DSS-WISE operates within DSAT (Dams Sector Analysis Tool) Viewer
- Uses 2-d computational engine (CCHE2D-FLOOD)
- Input:
 - ID from National Inventory of Dams
 - Typical breach parameters (for partial breach scenario)
 - Automatically utilizes NED, NBI, NID, & NLCD
- Output:
 - Inundation area
 - Arrival time shapefile
 - Max Depth shapefile
 - Summary report
HEC-RAS 1D

- RAS = “River Analysis System”, Developed by the Hydrologic Engineering Center of the US Army Corps of Engineers
- One-dimensional
- Can be run as a steady-state or unsteady-state simulation
- Input:
 - Cross section geometry, reach lengths, Mannings n
 - Discharge: peak flow (steady-state), hydrograph (unsteady-state)
 - Breach parameters or breach hydrograph
- Output:
 - Water surface elevation, average velocity, and other variables for each cross section
 - Depth grids, velocity grids using RAS-MAPPER
HEC-RAS 2D

- Combined 1D/2D
 - Channel can be modeled with cross sections in 1D
 - 2D overbank area is connected to channel through a lateral structure (“levee”-like) feature
- 2D only modeling available (no bridges)
- Allows for structured and unstructured meshes (triangles, squares, up to 8-sided cells)
- Inputs
 - Typical HEC-RAS setup, plus elevation data to define 2D area
- Outputs
 - Typical HEC-RAS output (1D)
 - Gridded Depths, WSELs, Velocities at max and at time-steps
FLO-2D

- Produced by FLO-2D Software, Inc.
- Simulates channel flow, unconfined overland flow, and street flow using a 2D engine
 - Cross sections can be imported from HEC-RAS for combined 1D/2D
- Models 2D flow using square grid elements
- Inputs:
 - Typical breach parameters, physical breach parameters (NWS-BREACH) or imported hydrograph
 - Elevation dataset
 - Roughness parameters
- Outputs:
 - Grid and/or shaded contour plots of depth, velocity, impact force
 - Animation of data
 - Numerous plots, tables that can be constructed for individual cells
 - Volume monitoring
Maximum depth contours

Maximum depth shaded contour plot
QUESTIONNAIRE

What’s the right tool for the job?

– Return on Investment/Up Front Costs
 • License fees
 • Training and learning curve
 • Supporting software fees
 o GIS

– Breach Hydrograph
 • Sunny Day and Overtopping events?

– Output data
 • Does it fit project needs
 • Validation and Diagnostics

– Agency requirements and preferences
 • Do you (or FEMA) have existing models on hand?
 • Reusable, Recyclable?

– Long term support of software
RESULTS

Breach inundation areas, Profiles, Costs, etc.
BEECH CREEK DAM – AN EXAMPLE

– Approximately 70’ tall earth dam
– Tributary valleys just DS of dam
 • Is 2-D necessary?
– Modeled in:
 • GeoDamBREACH
 • HEC-RAS (1D & 2D)
 • DAMBRK
 • FLO-2D
 • DSS-WISE
– HAZUS Runs using all models’ output
 • Economic losses
BEECH CREEK – BREACH INUNDATION AREAS

COMPARISON:
HEC-RAS 1D, HEC-RAS 2D, & DSS-WISE
Lessons Learned

– EAP analysis level software Lessons Learned
 • DSS-WISE Lite can be used as a first pass to determine study extents to inform an more detailed analysis in HEC-RAS or FLO-2D for instance
 • DSS-WISE Lite and GeoDam-BREACH model setup times < 1 hour
 • GeoDam-BREACH creates flood risk products overlapping with floodplain mapping goals

– Detailed Software Lessons Learned
 • FLO-2D capable of integrating with SWMM but requires annual subscription
 • HEC-RAS 2D free, quick model setup (in 2D only), capable of leveraging existing models
 • FLO-2D Basic and HEC-RAS are FEMA approved
 • HEC-RAS 1D is only software capable of modeling bridges
Lessons Learned

- Aligning with FEMA Floodplain mapping program
 - Dual use funding to stretch dollars
 - Leveraging existing FEMA models

- Model Diagnostics
 - DSS-WISE Lite – black box

- Developer Support
 - BOSS DMBRK no longer supported by developer
 - FLO-2D
 - HEC-RAS
 - DSS WISE Lite
 - GeoDam-BREACH

- HAZUS-MH
 - Accepts ESRI Grid data of WSELs
Wrapping Up

– All models are valuable in the right situation

– The key is to understand your situation
 • What are types and resolution of your inputs and required outputs

– Get additional details about each model from FEMA P-946
QUESTIONS?

June 23rd, 2016