A Unique Approach to City-Wide Inundation Mapping: Using Hydrodynamic Modeling to Create Non-Regulatory Products

Jeff Whanger, PE, SIT, CFM
Brenda Gasperich, PE, CFM
Steven E. Eubanks, PE, CFM, City of Fort Worth
Agenda

- Background
- Need for change in thinking
- New Data Development
- Non Regulatory Products
- Other applications
- Questions
Typical urban drainage patterns
Typical urban drainage patterns
Typical urban drainage patterns
Typical urban drainage patterns
History

• Fort Worth historic development philosophy:
 – Replace the creek with a pipe

• Result:
 – More flooding outside of FEMA mapped FP than within it.

• No mapping, limited studies outside of FEMA

• Previous Data: GIS maps, design plans & Steve’s brain

• Flood prevention needs to be proactive, not reactive

• Need for prioritization

• New Tool to define the issue

• Need to communicate to public

<table>
<thead>
<tr>
<th>Inside COFW</th>
<th>Inside FEMA (100-yr)</th>
<th>Outside FEMA (100-yr) >0.5’</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30,000 Acres</td>
<td>48,000 Acres</td>
</tr>
<tr>
<td></td>
<td>6,881 Structures</td>
<td>31,810 Structures</td>
</tr>
</tbody>
</table>
New Tool Development

- **What do we want?**
 - Citywide master plan

- **What do we have?**
 - LIDAR
 - Asset Inventory
 - Mapsheds
 - Other GIS data

- **Can we get there?**

- **How?**
 - Detailed Studies
 - Rapid assessments
GIS Tool Development

Now What?

– Known
 · Pipe Geometry
 · Drainage Area
 · Complaint Locations
 · Building Locations
 · Development Permit Locations

– Can figure out
 · Pipe Capacity
 · Density of:
 · Complaints
 · Existing Development
 · Future Development

– Basis of Metric 1 Mapshed “Grades”
Citywide Flood Hazard Assessment

- LIDAR only 2D Model
- Rainfall on Grid
- Shows us where the low spots or “at risk” areas are
- Flow TO the stream
- Initial comparison between systems
- Can continue adding detail

81 Structures At Risk
Or 1 per every 105 LF of Storm Drain
Comparison to Detailed Modeling

- No pipes
- Rainfall on mesh
- Runoff not dumped straight into inlets
- Large, coarse mesh
- No breaklines, voids, terrain adjustment, etc…
- Assumes 0.5 in/hr removed from design storm hyetograph
- End results tells about the same story…
- Quick turnaround
Non Regulatory Products

- Potential Depth/Inundation Grids
- Velocity maps
- Hazard maps
- HAZUS
Citywide 2D – Other Potential Uses

- Feed into Study Metrics
- Scoping Tool for Studies
- Evaluation of Emergency Vehicle Access
- Quick Evaluation of Roadway CIP (other CIP coordination)
- Overflow between watersheds
- Communication Tool
 - Council
 - Stakeholders
 - Public
Limitations

• Terrain Only, No Pipes

• Planning level, Metric 1 only
 – “This Mapshed is worse than that Mapshed.”
 – “This Study has more benefit than that study.”

• Not detailed enough to make specific design level pipe improvement recommendations (Can recommend study areas)

• Not valid for open channel flow, default to FEMA

• When detailed 2D study models become available, adopt those results (best available data)

• NOT REGULATORY
 – Inundation/hazard ≠ “Floodplain”
 Be careful how data is used and who has access
How this benefits the City

- Tells us things that aren’t obvious
- Cheaper & quicker than detailed studies
- Is being used to communicate with public
 - Limits/Liabilities
Questions?