The **Odd** Couple: Crossing *And* Restoring a Floodplain – All While Saving Millions per Day

Presented by

Brad Woznak, PE, PH, CFM

Rachel Pichelmann, PE, CFM

Image courtesy imdb.com
Project Background
Historical Crossing of Minnesota River

Ferry Crossing 1889

“Not safe for heavy loads or fast driving.” Combination Truss over Minnesota River built. Failed, 1914, under a 5-ton load.
Normal Conditions - TH101
Natural Functions & Benefits

Calcareous Fen Area

Generalized regional cross section:
- Recharge zone
- Peat apron formed over valley terrace (diffuse groundwater discharge)
- Discharge zone
- Calcareous fen

Raguet Wildlife Management Area
FEMA Floodplain Zone

Zone A

≈1 Mile

Zone A20
Study Elements

• Traffic forecasting and analysis
• Analysis of historical flooding
• Development of alternatives
• River modeling
• Evaluation of alternatives
• Public and Agency involvement
Flooding History – TH101

TH 101 Crossing Historical River Elevations

10-Year Flood Elev = 712.0
100-Year Flood Elev = 720.7
500-Year Flood Elev = 726.0
Spring 2011 Flood – TH101
Looking North Towards Chanhassen
Cost of Closures

- TH101 Closed 7 times since 1993
 - Total closure duration of ~180 Days

- 20,400 ADT (2009)

- Cost of TH 101 and TH 41 Closure (travel time and additional miles)*:
 - $670,000 per day (2009)
 - $1,675,000 per day (2030)
 - 25 days/closure x $1.675M/day = $42M/closure

* Costs developed using Metropolitan Council’s 2030 Regional Model.
Hydraulic Modeling Objectives

• Assess WSE for Existing Conditions
 – Approx. 35 Miles of MN River
 – From Carver to Confluence with Mississippi River
 – HEC-RAS 4.1.0

• Develop a Calibrated 2-D Model
 – Finite-Element Surface-Water Modeling System (FESWMS)
 – Done by Baird

• Assess Impact of Design Alternatives
 – Reduce Road Closure Frequency & Duration
Hydraulic Models

• HEC-RAS vs. FESWMS
 – HEC-RAS
 • Basic model used to evaluate alternatives
 • Regulatory model
 • Calibrated by USACE
 – FESWMS
 • Detailed data set
 • More accurately evaluates velocities, allowing for better bank stabilization design
 – D/S boundary condition: USGS Gage at Ft. Snelling
 – Flow values: USGS Gage near Jordan
Finite Element Grid Near TH101
2-D Model Calibration

- Hydrodynamic Modeling using FESWMS
 - Calibrated Using Field Data
 - March 28, 2011 Event (Approx. 30-yr Event)
 - Compared Flooded Area from Model to Flood Photos
 - Measured Flow, WSE, and Velocity
 - Adjusted Manning’s ‘n’ Values to Calibrate
2011 Flood Event – TH101
Design Alternatives

• Filling to Raise Road Profile
 – Modeling Showed Surcharge in 100-Yr Floodway WSE
 – Culverts Could Not Mitigate Surcharge

• Use of Upstream Storage
 – Not Feasible Due to Flat River Profile

• LOMR to Allow for Some Stage Increase
 – Not Practical Due to Length of Upstream Impact (30+miles)

• Land Bridge
Land Bridge Concept
Proposed Lands Bridge
TH101 Preferred Concept

- Minimum Road Centerline Elevation = 724.0’
- Bridge Length = 3,080 ft
- Bridge Deck Depth* = 84 inches
- Pier Spacing = 100 ft
- Pier Width = 1.5 ft
- 100-Year WSE Decreased From 720.7’ to 720.6’
- Closure Elevation Increased from 709.4’ to 722.0’

*Depth includes road cross-section, structural elements of bridge and railing/barrier.
TH101 Preferred Concept
Road Closure Frequency – TH101

TH 101 Crossing Historical River Elevations

Proposed Closure Elevation (722.0')
Current Closure Elevation (709.4')

Dates of Closure:
- 1951
- 1952
- 1965
- 1969
- 1993
- 1997
- 2001
- 2010
- 2011
- 2014

Elevation, ft

Dates:
- 11/7/1932
- 7/17/1946
- 3/25/1960
- 12/2/1973
- 8/11/1987
- 4/19/2001
- 12/27/2014
Road Closure Duration – TH101

TH 101 Crossing, Summer 1993

Proposed Closure Elevation (722.0')

Current Closure Elevation (709.4')

23 Days
Modeling Results

- Increased conveyance for all events
- “No Rise” Solution
 - HEC-RAS Results:
 - Peak WSE Decreases for 10-, 50-, and 100-Year Events
 - Peak WSE Unchanged for 500-Year Event
 - FESWMS Results:
 - Peak WSE Unchanged for All Modeled Events
- Velocity Decreased for all events
Evaluation Criteria

• Construction Cost
• Benefit/Cost
• Property Impacts and Costs
• Constructability
• Community Input
• Environmental Impacts/Opportunities
Project Benefits

• Cost-Effective Solution to reduce closure frequency & duration
 – $34 Million to Construct
 – Benefit/Cost = 3.8

• Floodplain Benefits
 – 150,000 CY Roadway Fill Removed
 – 8 Ac of Wetland Restoration
 – Restoration of environmental corridor connection
 – Restoration of natural flow regime

• Achieved balance between human needs and environmental sustainability
Contact Information

Brad Woznak, PE, PH, CFM
bwoznak@sehinc.com

Rachel Pichelmann, PE, CFM
rpichelmann@sehinc.com

Project Website:
http://www.dot.state.mn.us/metro/projects/hwy101river/
Thank you!