Take it to the Limit:
What We Have Learned Using 2D RAS in Hungary for Various Applications

Pal Hegedus, PE., D.WRE, Dr. Kovács Sándor
Outline

• Information regarding the Tisza
• History of the Tisza models
• Review of the modeling efforts with RASv5 beta
• Lessons learned
• What is next?
Where is the Tisza?
Geography
By the Numbers

Main data of the Tisza I.

- **Basin**: 157,200 km²
- **Distribution of the basin**:
 - Abroad: 110,040 km² (~70%)
 - Home/inland: 47,160 km² (~30%)
History of the 1D Tisza Model

2002-2003: Building the 1D Tisza model with HEC-RAS

Summary of Project

Length of Rivers 1,500 km

Rivers 16
Reaches 27
Cross Sections 2083
Bridges 103
Storage Areas 17
History of the 1D Tisza Model

Adding the Upper-Tisza model (Ukraine)

Summary of Project

- Length of Rivers: 720 km
- Rivers: 8
- Reaches: 15
- Cross Sections: 2569
- Bridges: 37
- Storage Areas: 11
Ongoing work: Connecting the Danube and Tisza

1D HEC-RAS model in Serbia
Modeling with FLO-2D

- Successful projects since 2010
- Used for flood risk evaluation
- Emergency reservoir inundation mapping
- Basin hydrology and flood inundation studies
Modeling with FLO-2D

Jászteleki Reservoir

10 million m³ (8,170 aft) storage

50 – 60 m³/sec
1,800 – 2,100 cfs
Max. inflow
Modeling with FLO-2D

Barsóhalmi Reservoir

15 million m³ (12,200 aft) storage

50 – 60 m³/sec
1,800 – 2,100 cfs
Max. inflow
Modeling with FLO-2D

Tiszaroffi Reservoir
56 million m3 (45,600 aft) storage

210 – 220 m3/sec
6,500 – 7,100 cfs
Max. inflow

Outlet structure
Modeling with FLO-2D

Hanyi Channel and Basin

Modeled rainfall and runoff on 50 x 50 meter grid
Modeling with FLO-2D

VÍZHOZAMOK A HANYIPUSZTAI HÍD FELETT I.

VÍZHOZAMOK A HANYIPUSZTAI HÍD FELETT II.

VÍZHOZAMOK A HANYIPUSZTAI HÍD SZELVÉNYÉBEN
Modeling with FLO-2D

Basin 2.49

Flooding from Zagyva

33,000 acre-feet of inundation through the breach
Modeling with FLO-2D

Basin 2.37

410,000 acre-feet of inundation through the breach

Flooding from Zagyva
Modeling with FLO-2D

Basin 2.37

Flooding from Tisza

1,200,000 acre-feet of inundation through the breach
Modeling with FLO-2D

Flooding from Tisza

Basin 2.82

1,200,000 acre-feet of inundation through the breach

Model area 1,200 mi²

Grid elements 100*100 m

Number of elements 300,340
Modeling with River FLO-2D
Modeling with River FLO-2D

Kisköre Lock and Dam
Modeling with River FLO-2D

Grid density:
- 50 m floodplain
- 25 m river main channel
- 10 m around structures
Modeling with River FLO-2D
Modeling with River FLO-2D

Q = 2,900 m3/s
Modeling with River FLO-2D

Q = 1,700 m³/s
Modeling with River FLO-2D

303 – 324 fkm

Bivalytó

303 fkm

324 fkm
Bivalytó
2006 conditions
Bivalytó
2010 conditions

Levee removed

New levee alignment

Levee segment left in place
Modeling with River FLO-2D

Grid density:
30 m floodplain
15 m main channel
Modeling with River FLO-2D
Modeling with River FLO-2D

Bivalytó
2006 conditions
Modeling with River FLO-2D

Bivalytó
2010 conditions
Modeling with RAS 5.0 Beta
Modeling with RAS 5.0 Beta
Modeling with RAS 5.0 Beta
MIDDLE-TISZA WATER RESERVOIRS

247 million m³

2009.
97 million m³

Marc. 2013.
99 million m³
Modeling with RAS 5.0 Beta

Szamos- Kraszna Reservoir

Outlet structure

Intake structure
Modeling with RAS 5.0 Beta

Szamos- Kraszna Reservoir
Modeling with RAS 5.0 Beta

Tiszaroff Reservoir
Modeling with RAS 5.0 Beta

Jásztelek Reservoir
Modeling with RAS 5.0 Beta

Hanyi-Tiszasüly Reservoir
Modeling with RAS 5.0 Beta
What is Next for the Tisza

- Finishing the connection with the Danube
- Connecting all emergency basins using RAS v5 for system optimization
- Develop HEC-RTS for Zagyva
- Develop HEC-RTS for the entire Tisza watershed
Lessons Learned

• Working with early beta versions… Why?
• Providing feedback can be rewarding/frustrating
• Great potential
• Looking forward for the final version release
Thank You and I am Ready for Questions!
I think…