Levee Removal/Setback for Flood Risk Reduction in the Upper Mississippi River Basin:

Policy, Funding and Implementation Issues

Michael Schwar, Ph.D. PE (MARS)
Eileen Fretz (American Rivers)
Implementing Nonstructural Solutions for Flood Management in the Upper Mississippi River Basin – Project Tasks

• Policy Evaluation
• Funding Evaluation
• Success Stories
• Surveys of Floodplain Regulators and Floodplain Managers
• Modeling Analysis
Upper Mississippi Watershed

- Portions of eight states
- 190,000 mi²
- Floods driven by rainfall and/or snowmelt
- Generally low gradient, wide flat floodplains
Benefits of Levee Setbacks

• Removal of structures from at-risk areas
• Hydrology
 – flood flow storage
• Hydraulics
 – reduced constriction reduces flood levels
General Nonstructural Floodplain Management Policy Observations

• Primary Federal policy drivers are FEMA (NFIP and Hazard Mitigation) and USACE (PL 84-99 and Comprehensive Plan)

• Floodplain regulations and responsibilities vary from state to state, but state regulators feel their are appropriate – no desire to try to revise
Identified Funding Mechanisms

- Federal
 - FEMA (grant programs)
 - NRCS (WRP)
 - USACE (PL 84-99, PAS)
 - USFWS (Partners, NAWCF)
 - HUD (CDBG)
 - EPA (WPDG, 319(b))
Identified Funding Mechanisms

• Private
 – Nature Conservancy
 – The Conservation Fund
 – Iowa Natural Heritage Foundation
 – Sand County Foundation
 – Local or Regional Land Trusts and Conservancies
 – Wildlife Conservation Groups
 – Industry
Identified Funding Mechanisms

• State
 – Illinois
 • Partners for Conservation Ecosystems Program
 • Water Resources Planning Program
 – Minnesota
 • Flood Damage Reduction Program
 – Wisconsin
 • Municipal Flood Control Grant Program
FP Manager Survey Results

• General public not generally tuned in, not aware of their risk
• Opportunities exist immediately after floods
• Federal program processes do not foster the use of nonstructural practices (timelines, B/C protocols)
• Need to incentivize private participants
• Important to consider local economic impacts
Implementing Nonstructural Projects in the UMRB

• Plan Ahead
• Capitalize on Multiple Benefits
• Act when the Opportunity Arises
Implementing Nonstructural Projects in the UMRB

Plan Ahead

• Identify potential projects
• Coordinate with potential stakeholders
• Identify requirements and limitations of various programs
• Develop an implementation plan
Example #1 - Planning Ahead
Pershing State Park/Locust Creek Floodplain (Linn County, MO)

- Levee Setback
 - 1428 acres adjacent to state park
 - Previously identified in multiple plans
 - Landowner eventually expressed interest
 - Multiple funding sources
 - Coordinated by NGO
Example #2 - Planning Ahead
Milwaukee MSD Watercourse Planning and Green Seams Program (WI)

- Flood Management
 - Buy out flooded structures
 - Implement ordinance
 - Regional storage
 - Structures in developed areas
 - Specific open area (floodplain) acquisition
Implementing Nonstructural Projects in the UMRB

Capitalize on Multiple Benefits
– Risk Reduction
– Natural Resources
– Recreation
– Open Space
– Water Quality

Expands the pool of potential partners and/or funding sources
Example #3 - Multiple Benefits
Vermillion River Corridor Plan
(Dakota County MN)

• River Corridor Planning
 – Comprehensive approach
 • WQ
 • Recreation
 • Habitat
 • Resiliency
 – Meander belt serves to reduce at-risk structures

Dakota County, MN
Example #4 - Multiple Benefits
Emiquon Preserve (Havana IL)

- **Floodplain Restoration**
 - Historically leveed former drainage district on Illinois River
 - TNC developed partnerships with USFWS, NRCS, USACE
 - Economic analysis
 - Provide habitat, recreation and ultimately reconnection
Implementing Nonstructural Projects in the UMRB

Act when opportunity arises

– Coordinate interested parties

– Utilize capabilities of various stakeholders
 • Flexibility of NGOs
 • Objectives of government agencies/programs
 • Technical expertise to deliver projects
Example #5 - Timely Response
Gays Mills Recovery (WI)

- Relocation out of Floodplain
 - Village of 600 endured repeated flooding, 2008 event was last straw
 - FEMA developed LTCR plan
 - Communicated a coherent vision
 - Assistance from state staff
 - HGMP used to acquire 32 structures
Example #6 - Timely Response
Louisa Levee District 8 (Wapello IA)

- Levee Removal
 - Response to repeated flooding
 - Acquisition by wildlife refuge
 - Multiple interested parties
 - NGO facilitated transactions
Encouraging Levee Setbacks and NSFM Projects in UMRB

• Encourage Local Practices that “Live with the River”
 – agricultural production
 – local ordinances
 – modeling tools

• Develop a Framework that Supports Project Implementation in the Wake of Future Flood events
 – planning and coordination
 – information clearinghouse
 – reform Federal B/C analysis approaches
 – strengthen effectiveness of FEMA post-disaster programs
Additional Slides - Modeling
Motivation

• American Rivers was looking for a method to quantify flood reduction benefits of restoring floodplain volume (removing levees) in Upper Mississippi River Basin

• Looked at three different watersheds (MRBI focus)
 – Spoon River, IL
 – Middle Minnesota River, MN
 – Cedar River, IA
Model

- Hydrologic Simulation Program Fortran (HSPF)
 - Meteorologic records input
 - Flow generated from land surface
 - Routed through stream reaches
- Continuous, generates synthetic gage records (hourly time step) which can be analyzed similar to gage records
Model

- **Hydrologic Simulation Program Fortran (HSPF)**
 - Meteorologic records input
 - Flow generated from land surface
 - Routed through stream reaches
- **Continuous, generates synthetic gage records (hourly time step) which can be analyzed similar to gage records**
- **Watersheds identified had existing HSPF models developed and calibrated by others (Cedar River TMDL)**
Methodology

- Run the model, develop “baseline hydrographs” throughout watershed
- Add representation of storage areas to model (various scenarios)
Conceptual Scenario
Methodology

- Run the model, develop “baseline hydrographs” throughout watershed
- Add representation of storage areas to model
- Rerun model, look at hydrograph changes
Methodology

• Run the model, develop “baseline hydrographs” throughout watershed
• Add representation of storage areas to model
• Rerun model, look at hydrograph changes
• For flood study, used annual peak flow analysis
Results

• Relevant factors –
 – Volume storage vs. stream flow
 – Location of storage vs. benefit observed
 – Elevation of restored floodplain
Reduction in Annual Flows

- Scenario 1: $y = 0.1977x$, $R^2 = 0.6438$
- Scenario 2: $y = 0.1521x$, $R^2 = 0.7806$
- Raised Scenario 2: $y = 0.0865x$, $R^2 = 0.9638$
Results

• Relevant factors –
 – Volume storage vs. stream flow
 – Location of storage vs. benefit observed
 – Elevation of restored floodplain

• Benefits primarily for small to moderate events (<20 year recurrence), with some exceptions

• Minimum restored subbasin area ~1-2% to see benefits

• Seem to be generally applicable in investigated watersheds
Frequent (2-10 year) Floods

\[
y = 0.0705x \\
R^2 = 0.7873
\]
What We’d Like to Do Next

• Cedar River
 – Try in other subwatersheds
 – Use actual project locations
 – Develop other benefit analysis techniques
 • Habitat
 • Water quality

• Elsewhere in Midwest to investigate general applicability